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Abstract

Skin detection is the process of discriminating skin and non-skin pixels in an arbitrary
image and represents an intermediate step in several image processing tasks, such as fa-
cial analysis and biomedical segmentation. Different approaches have been presented in
the literature, but a comparison is difficult to perform due to multiple datasets and vary-
ing performance measurements. In this work, the datasets and the state-of-the-art ap-
proaches are reviewed and categorized using a new proposed taxonomy. Three different
representative skin detector methods of the state of the art are selected and thoroughly
analyzed. This approaches are then evaluated on three different state of the art datasets
and skin tones sub-datasets usingmultiplemetrics. The evaluation is performed on single
and cross dataset scenario to highlight key differences between methods, reporting also
the inference time. Finally, the results are organized intomultiple tables, using the related
figures as an assistance tool to support the discussion. Experimental results demonstrate
the strength and weaknesses of each approach, and the need to involve multiple metrics
for a fair assessment of the method’s aspects.
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1 Introduction

The presence of human skin in media gives meaningful information. Skin features are
important cues that can be used to infer a variety of aspects related to a person, such as at-
tractiveness, age, and health [1, 2]. Skin detection is the process of discriminating skin and
non-skin pixels in an arbitrary image or video, as illustrated in Figure 1.1. It is primarily
used as an intermediate step for more complex tasks such as facial analysis [3, 4], gesture
analysis [5], video surveillance [6], privacy protection [7], adult image detection [8, 9, 10],

region-of-interest detection [11], and advertisements [12]. In the biomedical field, skin
detection plays an important role in lesions segmentation and cutaneous diseases classi-
fication [13, 14]. Detecting skin-colored pixels has proven quite challenging for various
reasons. Materials with a similar color to the skin, such as wood, copper, leather, and
sand, can be incorrectly labeled as skin pixels. Moreover, the appearance of skin in an
image depends on many variables, such as the illumination conditions, the camera color
science, and motion blur [15]. Finally, skin tones vary dramatically within and across in-
dividuals. Some challenging aspects are depicted in Figure 1.2.

(a) (b)

Figure 1.1: Skin detection: (a) original image; (b) detected skin pixels. The original image is part
of the Pratheepan dataset [16].

This thesis presents a review of the skin detection datasets and state-of-the-art ap-
proaches. Image databases and state-of-the-art approaches are retrieved, and a new tax-
onomy is proposed. Three different computational approaches are selected, thoroughly
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1 Introduction

(a) (b) (c)

Figure 1.2: Challenges of skin detection, visualized through: (a) the input image, (b) the ground
truth, (c) the prediction obtained from a thresholding method [17]. The first row
depicts an image containing materials with skin-like colors. The second row shows
how the colors of an image can be affected by the illumination conditions.

analyzed, and implemented to compare their strength, weaknesses, generalization capa-
bility, and performance. Before assessing the methods, a validation phase takes place;
then the methods are evaluated in single and cross dataset settings over three datasets
and three skin tones sub-datasets, using multiple metrics. Finally, inference times are
compared.

The main contributions of this work are the following:

• A comparative review of common datasets used in skin detection and discussion
on some major data limitations.

• An analysis of the state-of-the-art approaches at skin detection, with the proposal
for a new taxonomy.

• An analysis of some of the evaluation metrics used in binary classification prob-
lems.

• An in-depth analysis of the three representative state-of-the-art approaches.

• An evaluation of the selected approaches on three public datasets in single-dataset
and cross-dataset settings.

2



1.1 State of the art

• An evaluation of the selected approaches on three skin tones sub-datasets in single-
dataset and cross-dataset settings.

• An evaluation of the inferences times of the selected approaches.

The thesis is organized as follows: the Chapter 2 gives an overview of the datasets used
in skin detection including a discussion on the limitations and a detailed description of
the three chosen datasets. Chapter 3 contains an in-depth analysis of the selected ap-
proaches, describing the architecture, functioning, and operations performed by each
method. Chapter 4 contains a detailed explanation of the experiments setup and the eval-
uation process. Then, the evaluation results are presented and extensively commented.
Finally, Chapter 5 draws conclusions and gives an outlook on possible future work.

1.1 State of the art

From a classification point of view, skin-color detection can be seen as a two-class prob-
lem: skin-pixel vs. non-skin-pixel classification. The problem has been approached in
different ways, which aren’t uniquely categorizable. Researchers have categorized the
methods mainly in two groups: segmentation-based [18] and classification-based [17].

With the advent of deep learning, the former categorization becomes more ambiguous.
In fact, Machine Learning methods include both approaches based on the analysis of in-
dividual pixels, such as traditional methods, and approaches that use the pixel neighbors
information, such as CNNs.
A new classification-based taxonomy based is proposed, Figure 1.3. It categorizes skin
detector methods into the following groups: rule-based, machine learning and hybrid.
Rule-based methods use plain rules to classify each pixel as either skin or non-skin.
Thresholding and fuzzy logic systems are part of this group.
Machine learning approaches construct models from a training set of data to use in
classification. They describe a broad range of techniques, which can be subdivided into
statistical, deep learning and ensemble categories.
Hybrid approaches make use of a cluster of different techniques working together to
perform the classification. A common choice is to stack a region-based algorithm on top
of the result of other classification methodologies.

This section describes some common skin detection approaches. A chronological orga-
nization of the review with regards to the proposed taxonomy is reported in Table 1.1.
Jones andRehg 2002 [8] is amachine learning statisticalmethodbased on the construc-
tion of a skin-color histogrammodel from an image database. Then, a Bayesian classifier
uses the model to make predictions on the desired images. The histogram model is built
from an image database by analyzing the frequency that every pixel (R,G,B) combina-
tion has to be either skin or non-skin. The Bayes rule utilizes a threshold to classify pixels
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1 Introduction

Figure 1.3: Taxonomy of skin detectors.

based on their probability of being skin pixels.
Kovac et al. 2003 [19] is a rule-based thresholding method that uses the union of a pair
of rules to segment skin regions. The first rule specializes in finding skin at uniform day-
light illumination. The second rule specializes in finding skin under flashlight or lateral
daylight illumination.
Chen and Wang 2007 [20] is a hybrid approach consisting of four main stages: im-
age segmentation, key skin region extraction, similarity measurement, and skin region
classification. In the first stage, an unsupervised segmentation of color-texture regions in
images is applied to segment the image into homogeneous regions. In the second stage,
a skin extractor is used for extracting the key skin regions. Firstly, the candidates of key
skin regions are chosen by a rule-based skin classifier. Then, the confidence values of the
candidate regions are calculated as the proportion of the detected skin pixel count to the
total pixel count of the region. The region with the largest confidence value will be the
key skin region. In the third stage, the similarity measure between the key skin region
and all other regions is calculated to merge more possibly skin regions. In the last stage,
an algorithm is used to determine whether a region should be classified as a skin region
or a non-skin region. The algorithm calculates the pixels overlap ratio of the two 2D
skin-color histograms representing a region and the key skin region, and then utilizes a
threshold to classify the region.
Khan et al. 2010 [21] is a machine learning ensemble approach that utilizes a random
forest, an ensemble of tree predictors, to classify skin regions. The input is presented to
each of the trees in the forest. Each tree gives an independent classification prediction
and “votes” for that class. The forest chooses the classification having the most votes. An
image database is used to train the forest trees.
Iraji and Yavari 2011 [22] is a rule-based fuzzy logic approach that defines a set of rules
in the YCbCr color space to distinguish skin and non-skin pixels. There may be pixels
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1.1 State of the art

whose color acts both as skin color and as non-skin color. Thanks to fuzzy logic with a
Mamdani inference system (based on the implication rules), it is possible to get a unique
membership value for each pixel, making the classification straightforward.
Kawulok et al. 2014 [23] is a hybrid method that combines spatial analysis on top of
a machine learning classifier. First, the input image is converted into a skin probability
map using a statistical histogram skin color model and a Bayesian classifier. Then, the
probabilitymap is processed to find seed pixels. The initial seed pixels are expanded using
distance transform to include more skin pixels. Subsequently, a local skin color model
is trained from the obtained result and used to detect further skin pixels. Finally, the
distance transform is applied one more time.
Brancati et al. 2017 [17] is a rule-based thresholding approach that works in the YCbCr
color space. Dynamic correlation rules are used to evaluate the combinations of chromi-
nance values to identify the skin pixels in the YCb and YCr subspaces. The correlation
rules depend on the shape and size of dynamically generated skin color clusters computed
in the YCb and YCr subspaces.
He et al. 2019 [24] is a deep learning method based on a dual-task CNN for joint
detection of skin and body. The dual-task network contains a shared encoder but two
decoders for skin and body separately. For each decoder, its output also serves as a guide
for its counterpart, making both decoders mutually guided.
Tarasiewicz et al. 2020 [25] proposed Skinny, a deep learning approach based on an
encoder-decoderCNNarchitecture calledU-Net. Inception and dense block are inserted
into a modified U-Net architecture to benefit from a wider spatial context.

Name Year Category Subcategory

Tarasiewicz et al. [25] 2020 Machine Learning Deep Learning: CNN
He et al. [24] 2019 Machine Learning Deep Learning: CNN
Brancati et al. [17] 2017 Rule-based Thresholding
Kawulok et al. [23] 2014 Hybrid Machine Learning + Spatial Analysis
Iraji and Yavari [22] 2011 Rule-based Fuzzy Logic
Khan et al. [21] 2010 Machine Learning Ensemble: RandomForest
Chen andWang [20] 2007 Hybrid Rule-based + Region-growing
Kovac et al. [19] 2003 Rule-based Thresholding
Jones and Rehg [8] 2002 Machine Learning Statistical: Bayes

Table 1.1: Common approaches to Skin Detection, sorted by year in descending order.
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2 Datasets

The importance of databases can be demonstrated by looking at the challenges in the field
of Artificial Intelligence. For years, the research on Artificial Intelligence has focused on
the same concept: a better algorithmwould make better decisions, regardless of the data.
However, even the best algorithm would not work well if the learned data didn’t reflect
the real world.
A good dataset is one that fits the desired purpose. However, there are some general con-
siderations that indicate good quality in a dataset. Completeness, balanced classes, good
organization, and quality labeling define a dataset of high quality.

In skin detection, a dataset usually consists of two types of pictures: the original images
and the labeled images. Labeled images are the ground truths and can either be binary
masks or segmentationmasks, where only the skin pixels are present. Some datasets focus
on the skin of a specific body part, such as the face or the abdomen.

2.1 Datasets Overview

A summary of common skin detection datasets is presented in Table 2.1, starting from
the oldest to the newest. Only public datasets featuring images and including ground
truths are considered.
TDSD [10] is the acronym of Test Database for Skin Detection, which is a database
featuring 555 full-body skin images. Its ground truths are segmentation masks. It is also
referred to as IBTD.
ECU [26] is a dataset created at the EdithCowanUniversity and represents the largest an-
alyzed dataset, consisting of 3998 pictures. It has been categorized as a full-body dataset,
but most of its content is half-body shots. It can also be referred to as Face and Skin
Detection Database (FSD).
Schmugge [27] is a facial dataset that includes 845 images taken fromdifferent databases.
It provides several labeled information about each image and ternary ground truths.
Pratheepan [16] is composed of 78 pictures randomly sampled from the web, precisely
annotated[28]. It stores the pictures containing a single subject with simple backgrounds
and images containing multiple subjects with complex backgrounds in different folders.
VPU [29], as for Video Processing & Understanding Lab, consists of 285 images taken
from five different public datasets for human activity recognition. The size of the pic-
tures is constant between the images of the same origin. The dataset provides native train
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2 Datasets

and test splits. It can also be referred to as VDM.
SFA [30] is the acronym of Skin of FERET and AR Database and consists of 1118 semi-
passport pictures with a very plain background, and skin and non-skin samples (ignored
in this work). Its ground truths are segmentation masks.
HGR [23] is a Hand Gesture Recognition Database that organizes 1558 hand gesture
images in three sub-datasets. Two sub-datasets include size-fixed very high-resolution
images together with downscaled alternatives (used in this work).
abd-skin [31] is a database composed of 1400 size-fixed abdominal pictures accurately
selected to represent different ethnic groups and bodymass indices. It has native test and
train splits.

Name Year No. of Images Shot Type Skin Tones1

abd-skin [31] 2019 1400 abdomen african, indian, hispanic, caucasian, asian
HGR [23] 2014 1558 hand -
SFA [30] 2013 1118 face asian, caucasian, negro
VPU [29] 2013 285 full body -
Pratheepan [16] 2012 78 full body -
Schmugge [27] 2007 845 face skintones labels: light, medium dark
ECU [26] 2005 3998 full body whitish, brownish, yellowish, and darkish
TDSD [10] 2004 555 full body different ethnic groups

Table 2.1: Common Datasets used in Skin Detection
1The “Skin tones” column reports either the ethnic diversity cited in the corresponding
papers or the labels utilized for the skin tone values, in case they are present.

A few notable public datasets are missing from the analysis for the following reasons.
Compaq [8] is the first large skin dataset consisting of 4675 labeled pictures. Ground
truths are annotated with a semi-automatic process, hence the accuracy is not high [32].

Moreover, it is no longer available for public use [33].Despite thementioned limitations,
it is still used in the skin detection domain [17, 34].

LVS [8] is an image database containing 2118 labeled frames. Labeled Video Sentences
(LVS) contains original images and ground truths of skin and non-skin regions. The
ground truthmasks do not include ambiguous skin regions. The ground truths are quite
imprecise because features like eyes and mouth are counted as skin pixels, as seen in Fig-
ure 2.1.
Some databases have been discarded because they do not use images: Feeval [9]uses video
sequences;UCI [35] contains a list of skin and non-skin pixels in the BGR color space.
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2.2 Issues

(a) (b) (c)

Figure 2.1: LVS [8] dataset example: (a) original image, (b) skin ground truth, (c) non-skin ground
truth. Facial features like the eyes and mouth are treated as skin.

2.2 Issues

Image databases are essential for developing skin detectors. Over the years, new databases
keep getting published, but there are still some limitations on their reliability.
Themajor limitations are described below, and some of them are illustrated in Figure 2.2.

• The number of pictures is sometimes not sufficiently high.

• The image quality is at times very low, and a sufficient intra-class variation is not
present.

• The classes are often unbalanced, with one being much larger than the other,
which may cause some metrics to give overoptimistic estimations [36].

• The ground truth labeling sometimes is performed using semi-automatic tech-
niques, which give imprecise results [32]. Moreover, some skin regions are of du-
bious classification, especially the boundaries of the skin and around features such
as eyes and mouth.

• Additional data is often cited in the original papers of the datasets, but not pro-
vided alongside it. Data about the lighting conditions, background complexity,
number of subjects, indoor or outdoor scenery of an image may be extremely use-
ful in some applications.

• Compression artifacts generated during the storage of ground truth masks repre-
sent another issue. The artifacts are inconvenient for either binary and segmenta-
tion masks and should be avoided by using lossless formats.

• Different skin tones are rarely evenly represented, and especially are not directly
labeled. Furthermore, the categorization of skin tones does not follow a standard
system and is questionable.

• Most image databases do not provide native training and testing splits, which con-
fuses the evaluations in the literature.

9



2 Datasets

(a) (b) (c)

Figure 2.2: TDSD [10] bad annotation examples: (a) original imageNo. 0487; (b) skin segmenta-
tion ground truth No. 0487; (c) compression artifacts. Test Database for Skin Detec-
tion (TDSD) contains both good and bad annotation examples. Ruiz-del-Solar and
Verschae proposed three sub-dataset splits based on the annotation quality [33]. De-
spite the issues, thedataset is important because, beingborn as a test dataset, it contains
more uncorrelated images than those available in video datasets [37].

2.3 Chosen Datasets

Accordingly to the issues previouslymentioned, and considering thepopularity, diversity,
and size of the databases, the selected datasets for this work are ECU [26],HGR [23] and
Schmugge [27]. Amore detailed description of each one follows.

ECU [26] is a dataset created at the EdithCowanUniversity that aims to support research
on skin segmentation and face detection. It contains 3998 pictures differing in terms of
the depicted skin regions, skin tone types, lighting, and background, with both indoor
and outdoor environments. The authors did a rough categorization of the skin tones:
1665 images represent whitish and pinkish skin types; 1402 images represent yellowish
and light brownish skin types; 965 images characterize reddish, darkish, and dark brown-
ish skin types; the remaining ones generically represent other skin types.
HGR [23] is a Hand Gesture Recognition Database of 1558 images. It organizes into
three different sub-datasets: HGR1, HGR2A, and HGR2B. HGR1 is a set of 899 pic-
tures of various sizes and taken in uncontrolled light and background environments.
HGR2A contains 85 images of the same dimension taken in uniform lighting and both
controlled and uncontrolled backgrounds. HGR2B features 574 constant-sized pictures
taken with a controlled background and in uniform lighting. The skin tone diversity
is very low as the images represent only a limited number of subjects. Regarding the
HGR2A andHGR2B sub-datasets, this work utilizes the downscaled versions of the pic-
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2.3 Chosen Datasets

tures because high-resolution images would automatically be downscaled in approaches
like neural networks.
Schmugge [27] takes the name from its creator and consists of 845 images taken from
different sources: the pictures representing skin pixels are collected from the AR face
dataset [38], theUOPBdataset [39], and theUniversity ofChile dataset [33]. Thefirst two
include frontal facial images with varying illumination conditions and a very plain white
background. Therefore, for these images, the non-skin pixels are not included. TheChile
dataset is composed ofwebsites and digitized news clips and represents a variety of scenes,
thus its non-skin pixels are included. Other non-skin pixels are collected by randomly
sampling the University of Washington content-based image retrieval database [40]. Un-
like other datasets, the ground truth follows a ternary representation: pixels are labeled
as skin, non-skin, and “don’t care”. The “don’t care” label is assigned to pixels that are
too ambiguous or tedious to label as either skin or non-skin. This ternary division per-
mits better management of pixels classification. The dataset provides different files fea-
turing additional data for each image, such as the skin tone, the light type, and the original
database the picture is from. The ternary annotation system used in the dataset is shown
in Figure 2.3.

Figure 2.3: Schmugge [27] samples, RGB image on the left column and groundtruth on the right
column. In annotations, skin pixels are blackwhile non-skin pixels are white. Difficult
and tedious regions to mark (“don’t care”) are colored in gray. The background in the
top two images is marked in gray, indicating that those pixels did not participate in the
evaluation. Adapted from Schmugge et al. 2007 [27]
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3 InvestigatedMethods

As seen in 1.1, there are several approaches to skin detection, and it can be confusing
to make a choice. All the different categories of methods are characterized by certain
strength andweaknesses, therefore the choice to implement an approach should bemade
carefully.
Rule-based techniques represent a simple method to rapidly separate objects from their
surroundings, don’t require training, and generally are easy to implement. However,
color is the only feature they consider, and therefore the classification on backgrounds
with skin-like colors, such as wood or clay, could be difficult.
Machine learning approaches are suitable when there is training data available. There
are several techniques with different features in this category. Some uses only pixels color
has the main drive for classification, while others manage to consider multiple features.
Hybridmethods are suitable when a single classification technique does not produce the
desired results.

The chosenmethods belong to the following categories: thresholding, traditional ma-
chine learning, deep learning.
Thresholding has been chosen because of the simplicity of the approach, which may
demonstrate how powerful simple rules can be.
Machine learning and deep learning have been chosen for a comparison of their classifi-
cation ability: it might be interesting to see how CNNs can learn about semantics from
images [41] and the comparison with respect to the traditional models.

3.1 Thresholding

Thresholding methods are based on the idea that human skin can be grouped in clus-
ters within a color space. Therefore, the main process is to define the boundaries of the
clusters. Color images are segmented by designating separate thresholds for each color
component, as seen in Figure 3.1. The pixels falling within the range of these thresholds
are classified as skin pixels.

There are static and dynamic thresholding methods. Static thresholding consists of
simple fixed rules to define the cluster boundaries. InDynamic thresholding the rules
defining the boundaries depend on some variables.

13



3 InvestigatedMethods

Figure 3.1: Separate threshold settings for each color component. The shaded area is the Boolean
AND of the three threshold settings. Adapted from John C. Russ 2007 [42]

In literature, there isn’t an agreement on the best color space to use. Nonetheless, to se-
lect the most suitable color space, its features should be taken into account. For example,
RGBdescribes a high correlation between color channels. An interesting technique to in-
crease the detector accuracy is to combine channels of different color spaces [43]. Several
color spaces havebeen testedover the years: RGB [19, 44, 6],RGB-H-CbCr [43],HSV [45,

4, 46], YUV [47, 48], YCbCr [45, 48, 17]. Despite their simplicity, thresholding methods
are relevant because of their low computational cost. Their efficiency makes hardware
implementations suitable, for example on Field Programmable Gate Array (FPGA) [6].
An example of threshold rules in the RGB color space is presented below (taken from
Kovac et al. 2003 [19]):

# The skin colour at uniform daylight illumination

R > 95 AND G > 40 AND B > 20 AND

max{R, G, B} - min{R, G, B} > 15 AND

|R - G| > 15 AND R>G AND R>B

OR

# The skin colour under flashlight or (light) daylight

# lateral illumination

R > 220 AND G > 210 AND B > 170 AND

|R - G| <= 15 AND R>B AND G>B

14



3.1 Thresholding

3.1.1 Implementation

The chosen implementation1 is a dynamic thresholding approach [17] published in 2017.
An overview of the algorithm is presented below:

Step 1: RGB to YCbCr conversion

Step 2: Computation ofCrmax andCbmin

Step 3: Pixel-wise computation of correlation rules parameters

Step 4: Pixel-wise correlation rules check

Themethodworks in the YCbCr color space, so the first thing it does is the conversion
of an RGB input image by using the ITU-R BT.601-5 conversion [49]. The skin pixels
clusters assume a trapezoidal shape in the YCb and YCr color subspaces, as seen in Fig-
ure 3.2. Moreover, the shape and size of the trapezium vary according to many factors,
such as the illumination conditions.

In high illumination conditions, the base of the trapezium results larger. Besides,
the chrominance components of a skin pixel P with coordinates (PY , PCb, PCr) in the
YCbCr space exhibit the following behavior: the further is the (PY , PCr) point from the
longer base of the trapezium in the YCr subspace, the further is the (PY ,PCb) point from
the longer base of the trapezium in the YCb subspace, and vice versa.

Figure 3.2: Fittingmodel for the YCb and YCr subspaces, in different conditions of illumination:
(a) indoors with artificial light (b) outdoors with sunlight and (c) with low lighting.
Adapted from Brancati et al. 2017 [17].

1Source code available at https://github.com/nadiabrancati/skin_detection/
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3 InvestigatedMethods

The aforementioned observations are the base of the method: it tries to define image-
specific trapeziums in the YCb and YCr color subspaces and then verifies that the corre-
lation rules between the two subspaces reflect the inversely proportional behavior of the
chrominance components.

The first step is the computation of the height of the trapeziums in the YCb and YCr
subspaces (the trapeziums are referred to as TY Cb and TY Cr in the following), which will
be useful later on. Referring toFigure 3.3 for a visual representation, it canbenoticed that
by varying the Y value from its minimum value 0, to its maximum value 255, the coordi-
nates of points belonging to the longer bases of TY Cr and TY Cb are given by (Y ,Crmin)
and (Y ,Cbmax) in the YCr and YCb subspaces. The coordinates of points belonging to
the remaining sides of the trapezium are given by [Y ,HCr(Y )] and [Y ,HCb(Y )] with:

HCr(Y ) =















Crmin + hCr

(

Y−Ymin

Y0−Ymin

)

Y ∈ [Ymin, Y0]

Crmax Y ∈ [Y0, Y1]

Crmin + hCr

(

Y−Ymax

Y1−Ymax

)

Y ∈ [Y1, Ymax]

HCb(Y ) =















Cbmin + hCb

(

Y−Y2

Ymin−Y2

)

Y ∈ [Ymin, Y2]

Cbmin Y ∈ [Y2, Y3]

Cbmin + hCb

(

Y−Y3

Ymax−Y3

)

Y ∈ [Y3, Ymax]

(3.1)

where hCr = Crmax − Crmin and hCb = Cbmax − Cbmin represent the heights of
TY Cr and TY Cb, respectively.

TheCrmax andCbmin values are computed by taking into account the histogram of the
pixels with the following values: Cr ∈ [Crmin, 183] and Cb ∈ [77, Cbmax], looking
for the maximum of Cr and the minimum of Cb that are associated with at least 10% of
the pixels in the image. The Y0 and Y1 values are respectively set as the 5th percentile and
the 95th percentile of the luminance values associated with the pixels of the image with
Cr = Crmax. The same procedure is followed to find the Y2 and Y3 values, considering
the pixels withCb = Cbmin. This process is illustrated in Figure 3.4.

The correlation rules between the chromatic components PCr and PCb of a pixel P
are defined by the computation of some parameters, as follows:

PCr − PCb ≥ IP (3.2)

|PCb − PCbs | ≤ JP (3.3)

where IP is the minimum difference between the values PCr and PCb, PCbs is an esti-
mated value of PCb, and JP is the maximum distance between the points (PY , PCb) and
(PY , PCbs).
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3.1 Thresholding

Figure 3.3: Graphical representation of TY Cr and TY Cb. Adapted from Brancati et al. 2017 [17].

Figure 3.4: Computation ofCrmax on the histogram of Cr values. Adapted from Brancati et al.
2017 [17].

A pixel P is classified as a skin pixel if both the conditions hold. The first rule indicates
that the chrominance components should be sufficiently far from each other. The sec-
ond represents the range of values delimiting the PCbs value, to which the PCb should
belong. Figure 3.5 gives a visual representation of the operations to perform to compute
the required parameters.

PCbs = Cbmax − dPCbs

PCr = Crmin + dPCr

(3.4)
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Figure 3.5: Computation of the correlation rules parameters. Adapted from Brancati et al.
2017 [17].

with dPCbs and dPCr as the distances respectively between the points (PY , PCbs) and
(PY , PCr), and the longer bases of the trapezium in the corresponding subspaces. It is
possible to computedPCbs with respect todPCr on the basis of the inversely proportional
behavior of the chrominance components observed within the trapezium:

dPCbs = α · dPCr (3.5)

where α takes into account the different shapes of the trapezium, being computed as
the ratio between the normalized heights of the two trapeziums in correspondence with
the current luminance value PY as follows:

∆Cr(PY ) = HCr(PY )− Crmin

∆Cb(PY ) = Cbmax −HCb(PY )
(3.6)

where∆Cr(PY ) and∆Cb(PY ) represent thedistances between thepoints (PY , HCr(PY ))
and (PY , HCb(PY )) and the longer base of their respective trapezium.

Now, the values of∆Cr(PY ) and of∆Cb(PY ) are normalized with respect to the differ-
ence in the size of the trapeziums:
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∆′

Cr(PY ) =

{

∆Cr(PY ) · ATY Cb

ATY Cr

ifATY Cr
≥ ATY Cb

∆Cr(PY ) otherwise

∆′

Cb(PY ) =

{

∆Cb(PY ) ifATY Cr
≥ ATY Cb

∆Cb(PY ) · ATY Cr

ATY Cb

otherwise

(3.7)

whereATY Cr
andATY Cb

are the areas of the trapeziums TY Cr and TY Cb, respectively.
Then, the value α is given by:

α =
∆′

Cb(PY )

∆′

Cr(PY )
(3.8)

Finally, the remaining parameters IP and JP are given by:

IP = sf · [(∆′

Cr(Y )− dPCr) + (∆′

Cb(Y )− dPCbs)]

JP = dPCbs ·
dPCbs + dPCr

∆′

Cb(Y ) + ∆′

Cr(Y )

sf =
min((Y1 − Y0), (Y3 − Y2))

max((Y1 − Y0), (Y3 − Y2))

(3.9)

3.2 Statistical

Large amount of data can support simple and computationally efficient learning algo-
rithms [8]. Statistical methods aim at creating a model to understand how the data are
related in order to make predictions (an example can be seen in Figure 3.6). When per-
forming classification, these models not only allow to predict the class label, but also to
obtain a probability of the respective label. This probability gives the confidence on the
prediction.

Given a probability, different rules can be used to perform the classifications, with one
of the most common being the Bayes rule. In binary classification problems, a single
threshold is involved to choose at which probability one class should be classified over
another. The thresholding rule is not unique, multiple rules have been used in the litera-
ture [8, 50].

In skin detection, one of the most popular work of statistical modeling has been pub-
lished in 2002 [8]: a Bayesian classifier has been used to perform classifications start-
ing from the probabilities given by statistical models. In the same work, skin and non-
skin gaussian mixture models using a parallel implementation of the standard EM algo-
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rithm [51] and 16 gaussians in each model have been trained. A comparison with his-
togrammodels of size 32 is presented. The results describe slightly better performance in
the case of the histogram models, which also took only a matter of minutes to train, as
opposed to about 24 hours required by the gaussian mixture models. A mixture model
is also slower to use during classification since all the gaussians must be evaluated in com-
puting the probability of a single color value. Contrarily, a histogram model translates
to a fast classifier since only two table lookups are required to compute the probability
of skin. However, from a storage point of view, the gaussian mixture models are much
more compact: 896 bytes in contrast to 262Kbytes of the histogrammodels.
Gomez et al. 2002 [52] presented a work in which two 3-dimensional histogrammodels
are constructed to represent the skin and non-skin classes, and the probability is com-
puted with a rule different than the Bayes theorem.

Figure 3.6: Mixture of gaussians are an example of statistical models. Adapted from Jones and
Rehg 2002 [8]

3.2.1 Implementation

The chosen implementation2 uses three-dimensional histograms to model the data and
probability calculus to perform the classification [53]. The training data is used to con-
struct two histogram models representing the probabilities of skin and non-skin classes,
with RGB as the color space and a histogram size of 256 bins per color component. The
models are saved as a lookup table. The thresholding value utilized to label skin pixels is
0.555555.
An overview of the algorithm is presented below:

2Source code available at https://github.com/Chinmoy007/Skin-detection
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3.2 Statistical

Training:

Step 1: Initialize two 3-dimensional data structures

Step 2: Pick an image and the corresponding mask from the training dataset

Step 3: Loop every (R,G,B) pixel of the image

Step 4: Pick the corresponding pixel from themask: if it is a skin pixel, increase the value
at position [R, G, B] of the data structure representing skin, otherwise increase
the value in the other structure

Step 5: Return to the first step until the training images have all been processed

Predicting:

Step 1: Loop every (R,G,B) pixel from input image

Step 2: Calculate the probability of that (R,G,B) color combination of being skin

Step 3: If skin probability >Θ, the pixel is classified as skin

The key step in skin pixel classification is the computation ofP (skin | rgb), which is the
probability of a given rgb pixel to belong to the skin class, and it is given by the following
rule:

P (skin | rgb) = s[rgb]

s[rgb] + n[rgb]
(3.10)

where s[rgb] is the pixel count contained in bin rgb of the skin histogram and n[rgb]
is the equivalent count from the non-skin histogram.
A particular RGB value is labeled skin if:

P (skin | rgb) ≥ Θ (3.11)

where 0 ≤ Θ ≤ 1 is a threshold value that can be adjusted to trade-off between true
positives and false positives.

It is important to note that using color spaces other than RGB (such as YCBCr or HSV)
will not improve the performance of the skin detector [8]. TheDetector performance de-
pends entirely on the amount of overlap between the skin and non-skin samples. Colors
that occur in both classes with comparable frequencies cannot be classified reliably.

There are different ways to build the skin and non-skin color models. One of the most
common is to utilize histogram models: the skin and non-skin pixels contained in the
training set images are placed into the skin and non-skin histograms, respectively.
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Before constructing an histogrammodel, two requirements are needed: a color space and
the size of the histogram,which ismeasuredby thenumber of bins per color channel. The
fact that the performance of the classifier is independent of the color space, and RGB
being the most common and natural color space used in image representation, makes
RGB the favorite choice. Color images usually store 24 bits for each pixel, as there are
three color components represented by 8 bits each. Each color component is thereby
able to represent 28 = 256 levels of intensity.

(a) (b)

Figure 3.7: 3D histogram representation: (a) original photo by Jose and Roxanne licensed under
CC BY 2.0; (b) visualization made utilizing the “3D Color Inspector” plugin of Im-
ageJ.3

When building the histogram, the number of bins is important. Too few bins could
result in poor accuracy, while too many bins could lead to over-fitting [8]. Reducing the
number of bins helps to “generalise” and compact the histogram [52]. By using fewer
bins, a set of points of similar color is represented by a single color (this technique is called
color quantization. An example of a 3Dhistogramusing the technique is depicted in Fig-
ure 3.7). By using a 24-bit pixel representation, the histogram model would have a size
of 256 bins per color channel, which correspond to more than 16 million (2563) bins,
eachmapped to a specific (R,G,B) color triple. Jones andRehg (2002) [8] found the best
histogram size in their experiments to be 32. They also reported that, with a histogram
size of 256, 77% of the possible 24-bit RGB colors are never encountered, and thus the
histogram is mostly empty.
Using a histogram size of 256 in the RGB color space means that each of the three his-

3Plugin available at https://imagej.nih.gov/ij/plugins/color-inspector.html
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3.3 Convolutional Neural Networks

togram dimensions is divided into 256 bins. And each bin stores an integer counting the
number of times that color value occurred in the entire database of images.

3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of Neural Network commonly ap-
plied to analyze visual scenes. Their structure is inspired by the human brain, mimicking
the way that biological neurons signal to one another.

3.3.1 Neural Networks

A biological neuron has specialized protrusions called dendrites and axons. Dendrites
bring information to the cell body, and axons take information away from the cell body.
Information flows from one neuron to another across a small gap between them named
synapse. The dendrites carry the signal to the cell body where they all get summed; if the
final sum is above a certain threshold, the neuron can fire, sending a spike along its axon.

Figure 3.8: Biological neuron.4

In the computational model of a neuron, also named Perceptron, the signals that
travel along the axons xi interact multiplicatively (wixi) with the dendrites of the other
neuron based on the synaptic strengthwi at that synapse. The dendrites bring the signals
to the cell body, where they all get summed. The idea is that the synaptic strengths (the
weightsw) are learnable and control the strength of influence of one neuron on another.
The neuron then performs a transformation to the input through the activation func-
tion f(x) and generates the output y. The activation function is typically a non-linear
transformation that is applied to the input data. The bias value b allows the activation
function to be shifted to the left or right, to better fit the data. The weights and biases
represent the parameters of the network.

ANeural Network is a group of multiple neurons connected together, as shown in
Figure 3.10. Neurons are typically organized into different layers. Neurons of one layer

4The figure is adapted from https://cs231n.github.io/neural-networks-1/
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3 InvestigatedMethods

Figure 3.9: Neuron computational model.

connect only to neurons of the immediately preceding and immediately following layers,
therefore the output of a layer becomes the input of the next layer. The first layer is the
input layer, where each neuron represents a feature in the dataset, the last layer is the
output layer, and all the other layers are the hidden layers. Although a single output is
depicted in the figure, the output layer can have different sizes. It can vary from one
output for a single class classification to thousands of pixels of an image classification
map.
Once the dataset and problem are defined, the main steps to train a Neural Network are
the following:

Step 1: Construct the network architecture and initialize with random weights

Step 2: Do a forward pass (Forward propagation)

Step 3: Calculate the total error, which needs to be minimized

Step 4: Back propagate the error and Update weights

Step 5: Repeat the steps(2-4) for No. of epochs/until error is minimum.

In forward propagation, the input data is fed to the network in the forward direction:
each hidden layer gets the data, perform calculation and pass the result to the next layer.
Finally, the output layer calculates the output of the model.
The forward propagation for the network in Figure 3.10 is described below. The input
is represented by X , which can be imagined as a matrix of 2 rows and 1 column. The
next layer is represented by z11, z12, z13, which are the values of the intermediate neurons
calculated from the weight, bias, and neuron values of the previous layer. This layer can
be imagined as a matrix of 3 rows and 1 column. In this case, there are two input nodes
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3.3 Convolutional Neural Networks

Figure 3.10: A two-layer Neural Network architecture. Conventionally, the input layer is not
counted for defining the number of layers of aNeural Network. There are two input
features: x1 and x2, a hidden layer with three neurons, and an output layer with one
neuron. Each neuron has assigned the weight parameterWij . The b1 and b2 are the
bias parameters for the input layer and hidden layer, respectively.

and three output nodes that the parameters must fit.W
(layer)
pln, nln is the parameter to be opti-

mized, inwhich pln andnln represent the previous layer input neuron and the next layer
output neuron, respectively. The bias parameter for the input layer is represented by b1.





z11
z12
z13



 =





w11 w21

w12 w22

w13 w23





[

x1
x2

]

+





b1
b1
b1





Z [1] = W [1]X + b[1]

(3.12)

An activation function σ(Z) will be applied to the intermediate neuron values to learn
the non-linear patterns between inputs and target output variables. The a11, a12, and
a13 values are the output of the activation function that is applied to z11, z12 and z13,
respectively.





a11
a12
a13



 = σ





z11
z12
z13





A[1] = σ
(

Z [1]
)

(3.13)
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At the next step, A[1] becomes the input layer and z21 becomes the output layer. There
are three input nodes and an output node that the parametersmust fit, soW [2] is amatrix
with one row and three columns. The bias parameter for the hidden layer is represented
by b2.

[z21] =
[

w31 w41 w51

]





a11
a12
a13



+ [b2]

Z [2] = W [2]A[1] + b[2]

(3.14)

The activation function σ(Z) is applied to the obtained values, and the algorithmic step
represented by this layer finishes.

[a21] = σ[z21]

A[2] = σ
(

Z [2]
) (3.15)

The output of the neural network is calculated, hence the forward propagation algorithm
ends.

Activation functions are an important part of Neural Networks. Without them,
the networks are just the weighted sum of their inputs plus a bias term, unable to learn
any complex and nonlinear function. Activation functions are means to introduce non-
linearity to the model. There are different classes of activation functions available, with
common ones being the Sigmoid, the ReLU, the Tanh, and the Linear activation func-
tions. The mentioned activation functions are illustrated in Figure 3.11.

The next step in a Neural Network is to compute the loss (error). Once the out-
put of the network is obtained, it is compared to the desired output value (the so-called
ground truth), and a loss function computes the error signal, which measures how well
the network predicts outputs.
A popular loss function is the Cross-Entropy Loss, defined as follows:

J = − 1

m

m
∑

i=1

L
(

a[2](i), y(i)
)

L
(

a[2], y
)

= −y log a[2] − (1− y) log
(

1− a[2]
)

(3.16)

where L is the loss function and J is the cost function: the average loss over the entire
training dataset.

The goal is to then find a set of weights and biases that minimizes the error. However, it
is impossible to compute the error signal for internal neurons directly because the output
values of these neurons are unknown. The idea is to propagate the error signal back to all
neurons by computing the gradient of the loss functionwith respect to each weight. The
derivative of the loss function on each parameter gives information about how changing
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Figure 3.11: Common activation functions. The Tanh function forces the values to be between
−1 and 1. The Sigmoid function forces the values to be between 0 and 1. The ReLU
function cuts values below zero. The Linear activation function returns the input.

the parameter impacts the function value. The algorithm that computes the gradient is
called backpropagation.

Figure 3.12: The red line represents the back-propagationprocess. Theda[2], dz[2], dw[2], db[2],
da[1], dz[1], dw[1] and db[1] are the partial derivative of the loss function with re-
spect to a[2], z[2],w[2], b[2], a[1], z[1],w[1] and b[1] respectively.

While performing the derivative calculation, it is also necessary to calculate the deriva-
tive of the activation function. Below is presented the derivative of the Sigmoid Activa-
tion function:
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σ(x) =
1

1 + e−x
=

(

1 + e−x
)

−1

σ′(x) =
(

1 + e−x
)

−2
e−x

=
e−x

(1 + e−x)2

=
1

(1 + e−x)
∗ 1 + e−x − 1

(1 + e−x)

=
1

(1 + e−x)
∗
(

1− 1

1 + e−x

)

= σ(x)(1− σ(x))

(3.17)

The computation of the partial derivative of weight and bias parameters is done as fol-
lows:

da[2] =
∂L

∂a[2]
da[1] =

∂L

∂a[1]

dz[2] =
∂L

∂z[2]
dz[1] =

∂L

∂z[1]

dw[2] =
∂L

∂w[2]
dw[1] =

∂L

∂w[1]

db[2] =
∂L

∂b[2]
db[1] =

∂L

∂b[1]
(3.18)

When the error signal for each neuron is computed, the weights coefficients of each neu-
ron input node may be modified to minimize the error. The weight updating is com-
monly performed by a gradient descent algorithm, which takes advantage of the already
calculated gradients. The weight and bias parameters are updated by subtracting the par-
tial derivative of the loss function with respect to those parameters. A visualization of
the gradient descent algorithm is displayed in Figure 3.13. The step size can be modified
accordingly thanks to the learning rate coefficientα, which controls howmuch to update
the parameter.

W [1] = W [1] − α
∂L

∂W [1]

b[1] = b[1] − α
∂L

∂b[1]

W [2] = W [2] − α
∂L

∂W [2]

b[2] = b[2] − α
∂L

∂b[2]

(3.19)
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Figure 3.13: Visualization of the gradient descent algorithm. θ0 and θ1 represent the parameters
to update: the bias and the weight values, respectively.

Convolutions in Neural Networks

A Convolutional Neural Network (CNN) has the same architecture as the usual Neu-
ral Network but arranges its neurons in three dimensions (width, height, depth). Every
layer of a CNN transforms the 3D input volume to a 3D output volume of neuron ac-
tivations. There are three typologies of layers utilized in a CNN architecture: the convo-
lutional layer, which increases the efficiency of the forward function and vastly reduces
the number of parameters, the pooling layer, and the fully-connected layer, which is the
regular layer present in Neural Networks. Typically convolutional layers are followed by
an activation function, such as a ReLU. The convolutional and pooling layers are used
for feature extraction, while the fully connected layers are used for classification. An ar-
chitecture overview is displayed in Figure 3.14.

Figure 3.14: Overview of a CNN architecture.
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TheConvolutional layer’s parameters consist of a set of learnable filters. Every filter
is small spatially (alongwidth and height) but extends through the full depth of the input
volume. A typical filter on the first layer of a Convolutional Neural Network might have
size 5x5x3 because colored images have depth 3, the color channels. During the forward
pass, each filter is slid across the width and height of the input volume. The dot products
between the entries of the filter and the input at any position are computed. As the filter
slides over the width and height of the input volume, it produces a 2-dimensional activa-
tion map that represents the responses of that filter at every spatial position. In this way,
the networkwill learn filters that activate when they see some type of visual features, such
as an edge. Inside a convolutional layer, there is a set of filters: each of them extracts a par-
ticular feature and produces a separate 2-dimensional activation map. These activation
maps are stacked along the depth dimension and produce the output volume.

The first advantage of a convolutional layer is the local connectivity (depicted in Fig-
ure 3.15a): each neuron of the layer is connected only to a local region of the input vol-
ume. The spatial extent of this connectivity is a hyperparameter called the receptive field
of the neuron (equivalently this is the filter size). The connections are local in 2D space
(alongwidth and height) but always full alongwith the entire depth of the input volume.

The second advantage is parameter sharing. It is possible to dramatically reduce the
number of parameters by making one reasonable assumption: if one feature is useful to
compute at some spatial position (x,y), then it should also be useful to compute at a differ-
ent position (x2,y2). Apractical application of this reasoning can be found in Figure 3.16.
The parameter sharing is done by slicing the depth of the volume size into 2-dimensional
slices, called depth slices. The neurons in each depth slice share the sameweights and bias.
For example, a volume of size 55x55x96 has 96 depth slices, each of size 55x55; by using a
filter size of 11x11x3 on the volume, the convolutional layer will have only 96 unique sets
of weights for a total of 96 ∗ 11 ∗ 11 ∗ 3 = 34 848 unique weights, or 34 944 parame-
ters (+96 biases). Without this technique, the parameters would have been much more:
96 ∗ 55 ∗ 55 = 290 400 neurons, each using 11 ∗ 11 ∗ 3 = 363 weights and 1 bias,
for a total of 290 400 ∗ 364 = 105 705 600 parameters. During backpropagation, every
neuron in the volume will compute the gradient for its weights, but these gradients will
be added up across each depth slice, and only update a single set of weights per slice.

It is common to periodically insert a Pooling layer, which performs a form of non-
linear down-sampling, in-between successive Convolutional layers in a CNN architec-
ture. Its function is to progressively reduce the spatial size of the representation to re-
duce the number of parameters and computation in the network, and hence to also con-
trol overfitting. There are several non-linear functions to implement pooling, where max
pooling is the most common (depicted in Figure 3.17. It partitions the input image into
a set of rectangles and, for each such sub-region, outputs the maximum. It is important
to note that pooling loses the precise spatial relationships between high-level parts (such
as nose and mouth in a face image).

30



3.3 Convolutional Neural Networks

(a) (b)

Figure 3.15: Some Convolutional layer features. (a) Global (left) and local (right) perception. (b)
The red volume represents an example input, a 32x32x3 image, and the blue volume
is an example volume of neurons in the first Convolutional layer. Each neuron in the
convolutional layer is connected only to a local region in the input volume spatially,
but to the full depth (all color channels). Note, there are multiple neurons (5 in this
example) along with the depth, all looking at the same region in the input: these neu-
rons share the same receptive field. Despite this, they do not share the same weights,
because they are associated with 5 different filters.

Figure 3.16: Example filters adapted fromKrizhevsky et al. 2012 [54]. Each of the 96 filters shown
here is of size [11x11x3], and each one is shared by the 55*55 neurons in one depth
slice. Notice that the parameter sharing assumption is relatively reasonable: if detect-
ing a horizontal edge is important at some location in the image, it should intuitively
be useful at some other location as well. There is therefore no need to relearn to de-
tect a horizontal edge at every one of the 55*55 distinct locations in the Conv layer
output volume.
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Figure 3.17: Max pooling with a 2x2 filter and stride = 2: the filter moves two pixels right for each
horizontal movement and two pixels down for each vertical movement.
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3.3.2 Implementation

The chosen implementation5 consists of a modified U-Net [14] incorporating dense
blocks and inception modules to benefit from a wider spatial context. The network is
named Skinny [25] and is depicted in Figure 3.18. An additional deep level is appended to
the original U-Net model, to better capture large-scale contextual features in the deepest
part of the network. The features extracted in the contracting path propagate to the cor-
responding expansive levels through the dense blocks. The original U-Net convolutional
layers are replaced with the inception modules: before each max-pooling layer, in the
contracting path, and after concatenating features, in the expanding path. Thanks to
these architectural choices, Skinny benefits from a wider pixel context.

Figure 3.18: The architecture of Skinny. Adapted from Tarasiewicz et al. 2020 [25]

In image segmentation, it would be useful for the output of a Neural Network to be di-
rectly a classification map. It can be achieved by decapitating the fully connected layers
of a CNNnetwork, converting it into a Fully Convolutional Network (FCN) [55]. In
fact, fully connected layers can be viewed as convolutions with kernels that cover their en-
tire input regions. An example of a fully convolutional network is theU-Net [14] (called
in this way because of its U shape, which can be seen in Figure 3.19), a famous network
used for semantic segmentation. The architecture of an FCN can be seen as a union of
two networks: an encoder, which takes the input and output a feature map, and a de-
coder, which takes the feature vector from the encoder and gives a classification map in
output.

5Source code available at https://github.com/ttarasiewicz/Skinny
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Figure 3.19: U-Net is a Fully Convolutional Network that utilizes the encoder-decoder architec-
ture. The encoder consists of the contracting pathway of the network, while the de-
coder consists of the expanding pathway. Adapted from Silburt et al. 2019 [56]

The encoder performs the feature extraction task via multiple down-sampling oper-
ations, in the same way as the first part of a CNN. The decoder must then up-sample
these feature maps multiple times until the achievement of the desired classification
map, which size is determined by the architecture. The upsampling operation is possible
thanks to the skip connections. Skip connections are used to skip features from the con-
tracting path to the expanding path in order to recover spatial information lost during
downsampling, making fully convolutionalmethods suitable for semantic segmentation.
TheUp-sampling layer consists of a transposed convolution, an operation that goes in
the opposite direction to a convolution, as shown in Figure 3.20.

Figure 3.20: Transposed convolution. Each element of the input feature map is taken and mul-
tiplied with every element of the kernel. The outputs of these operations are then
summed.
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The main advantage of the chosen implementation compared to a regular U-Net is
the addition of inception modules and dense blocks. Salient parts in the image can have
extremely large variations in size. For example, an image can represent a dog nearby or
far away, and the size of the part of the image occupied by the dog varies. Because of
the huge variation in the location of the information, choosing the right kernel size for
the convolution operation becomes tough. A larger kernel is preferred for information
distributed more globally, and a smaller kernel is preferred for information distributed
more locally. The solution is to have filters with multiple sizes operate on the same level.
The inception module [57] (displayed in Figure 3.21a) performs this operation.
Dense blocks [58] strengthen feature propagation and reuse. A dense block comprises

n dense layers. These dense layers are connected using a dense circuitry such that each
dense layer receives featuremaps fromall preceding layers andpasses its featuremaps to all
subsequent layers. The dimensions of the features (width, height) stay the same in a dense
block, but the number of filters changes between them. Adense layer can be imagined as a
convolutional layer, followed by a batch normalization layer, and the activation function.

The goal of Batch Normalization [59] is to achieve a stable distribution of activation
values throughout training. The distribution of the inputs to layers somewhere down
in the network may change after each mini-batch of input images, as the weights refresh.
This canmake the learning algorithmalways pursue amoving target. In a neural network,
batch normalization is achieved through a normalization step that fixes the means and
variances of each layer’s inputs. Ideally, the normalization would be conducted over the
entire training set. However, to use this step jointly with optimization methods, it is
impractical to use global information. Thus, normalization is restrained to each mini-
batch in the training process.
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3 InvestigatedMethods

(a) (b)

Figure 3.21: (a) Inception module. 1x1 convolutions reduce the dimension along the direction of
thenumberof channels,making theprocess less computationally expensive. Adapted
from Szegedy et al. 2015 [57]. (b) A 5-layer dense block with a growth rate of k = 4.
Every layer has access to its preceding feature maps, and therefore, to the collective
knowledge. Each layer adds then new information to this collective knowledge, in
concrete k feature maps of information. Adapted fromHuang et al. 2017 [58].
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4.1 Metrics

Metrics give accurate measurements about how a process is functioning and provide a
measure to suggest the improvements. Developing and understanding standardizedmet-
rics is crucial to guide decision-making and prevent the need tomake hasty decisions [60].

As stated in 1.1, skin detection is a two-class problem. To evaluate a binary classifier,
the ideal data (the ground truth) is compared to the predicted data given by the method.
In the case of skin detection, data is generally represented by binarymasks. The primitive
metrics to define are the ones inside a confusion matrix, depicted in Figure 4.1. A False
Positive is an error in binary classification in which a test result incorrectly indicates the
presence of a condition such as a disease when the disease is not present. A False Nega-
tive represents the opposite case: the test result incorrectly fails to indicate the presence
of a condition when it is present. These are the two kinds of errors in a binary test, in
contrast to the two kinds of correct results (a True Positive and a True Negative). It
is important to note that the gravity of an error depends on the contest. An example of
different error seriousness is illustrated in Figure 4.2. In image segmentation, False Posi-
tives may represent a lesser gravity since a follow-up processing of the image could fix the
issues, while the data of false negatives is lost.

Figure 4.1: A confusion matrix.

Starting from the primitivemetrics, it is possible to computemore complex evaluation
metrics, such as Recall, Specificity, and Precision.
Recall, also called True Positive Rate or Sensitivity, represents how many relevant items
are selected.
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Figure 4.2: The gravity of an error depends on the contest in which it happens. False Negatives
and False Positives can have different gravity.

Specificity, also called False Positive Rate, represents how many negative elements are
truly negative.
Precision represents howmany selected items are relevant.
These metrics are calculated as follows:

Recall =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

(4.1)

where TP, TN, FP, FN are respectively True Positives, True Negatives, False Posi-
tives, and False Negatives.

Recall, Specificity, and Precision may not be enough to evaluate a classifier, so they are
often combined into other metrics, such as F1-Score, IoU, and Dprs.
F1-Score, also called F-Measure, Sørensen-Dice coefficient, or Dice similarity coefficient,
is a measure of a test’s accuracy. The F1 in its name means that the β value of the generic
F-Score is set to 1. The F1 score is the harmonic mean of precision and recall. The more
generic Fβ score applies additional weights, valuing one of precision or recall more than
the other.
IntersectionOver Union (IoU), also named Jaccard index,measures similarity between
finite sample sets, and is defined as the size of the intersection divided by the size of the
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union of the sample sets. The sample sets are represented by the ground truth and the
prediction given by a skin detector.
Dprs [61] is a metric that focuses on segmentation algorithms. The already mentioned
metrics are expressed as a compromise between twoof the three aspects that are important
for a quality assessment: Precision, Recall, and Specificity [61]. Dprs takes into account
all of the three aspects. It measures the Euclidean distance between the segmentation,
represented by the point (PR,RE, SP ), and the ground truth, the ideal point (1, 1, 1),
hence lower values are better in this case.
These metrics are calculated as follows:

F1 =
2TP

2TP + FP + FN

IoU =
TP

TP + FP + FN

Dprs =
√

(1− PR)2 + (1−RE)2 + (1− SP )2

(4.2)

where PR,RE, SP are Precision, Recall, and Specificity, respectively.

It is possible to note that F1-Score and IoU have a similar formula: the only difference is
that F1 weights the True Positives higher. When taking the average score of each metric
over a set of inferences, IoU tends to penalize single instances of bad classification more
than the F1 score

1. Suppose for example that the vast majority of the inferences are mod-
erately better with classifier A than B, but some of them are significantly worse using
classifier A. It may be the case then that the F1 metric favors classifier A while the IoU
metric favors classifier B. For a better interpretation of the average scores between multi-
ple instances, the difference F1-IoU is taken into account. The higher the difference, the
more is the bad inferences in the set, while a lower difference means that the prediction
set is more balanced. All the described metrics range from 0 to 1, except for primitives,
which are whole numbers, and Dprs, which ranges from 0 to

√
3.

It is also important to note that F1 and IoU do not take into account the True Nega-
tives. In the case of skin detection the performances are generally measured on the skin
class, hence this limitation is negligible. However, if True Negatives are important for an
evaluation, more balanced metrics should be taken into account, such as the Matthews
correlation coefficient (MCC) [36].

1A detailed explanation can be found at https://stats.stackexchange.com/a/276144
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4 Results

4.2 Experimental setup

Before the evaluation process on the chosen datasets, the selectedmethods have been val-
idated on the datasets splits used in their original papers. In this way, it has been possible
to check their proper functioning. The statistical method [53] has not been validated
because it does not refer to a paper and evaluations are not reported. The thresholding
method [17] uses a metrics averaging of this type: the Recall, Precision, and Specificity
measures are calculated as average scores over the set of instances, then the obtained scores
are used to calculate F1-Score and Dprs. The U-Net approach [25], instead, calculates the
F1-Score directly as the average score over all the set of instances. The validation results
are shown in Table 4.1 and Table 4.2.

F1-Score Dprs

HGR1 ECU Pratheepan HGR1 ECU Pratheepan

Original 0.8252 0.6550 0.6592 0.2667 0.5043 0.5149
Implementation 0.8257 0.6586 0, 6630 0.2660 0.5006 0.5096

Change 0.0005 0.0036 0.0038 0.0007 0.0037 0.0053

Table 4.1: Brancati et al. 2017 [17] validation data.
Each dataset was used in its entirety to perform the testing.
1HGR consists of: HGR1, HGR2A-downscaled, HGR2B-downscaled.

F1-Score
HGR1 ECU2

Original 0.9494 0.9230
Implementation 0.9308 0.9133

Change 0.0186 0.0097

Table 4.2: Tarasiewicz et al. 2020 [25] validation data.
1HGR consists of: HGR1, HGR2A-downscaled, HGR2B-downscaled.
2ECUwas split accordingly to the original work of the method.
The model was trained on the ECU splits; HGR has not been used for training.
The testing was performed on the test set of ECU and the entirety of HGR.

After the validation phase, the setup of the experiments begins with the definition of
the employed datasets:

• ECU: 3998 images.

• HGR: 1558 images fromHGR1,HGR2A-downscaled,HGR2B-downscaled sub-
datasets.
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4.2 Experimental setup

• Schmugge: 840 images. The pictures have been processed by reading the .config.
SkinImManagerfile provided by the dataset. Five pictures have been ignored because
of faulty ground truths: aa50.gt.d3, dd71.gt.d3, hh54.gt.d3, and aa69.gt.d3 that
has a duplicated entry in the file. The rule used to manage the ternary ground
truths has been considering whatever is not the background as skin.

Skin tones sub-datasets are defined by taking advantage of the additional labels in the
Schmugge dataset. The resulting sub-datasets represent light, medium, and dark skin
tones and consist of 409, 101, and 27 pictures, respectively. Not all Schmugge dataset
is used for skin tones, because the database contains whole images of non-skin pixels, as
described in section 2.3.

None of the datasets provide native training and testing splits. The train and validation
sets have been merged in methods that do not use the validation set. For ECU, the splits
used are the ones mentioned in Tarasiewicz et al. 2020 [25]. HGR, Schmugge, and skin
tone splits are randomly defined by keeping the following proportions: 70% train, 15%
validation, and 15% test. Since the proportionswould reduce the dark sub-dataset to only
19 training images, the data has been augmented in this case, only for the training split.
The purpose is to get at least 100 images for the evaluations, but also to generate images
that look natural; 104 was the final size of the training set. The following augmentation
operations provided by the Albumentations library [62] are performed in the following
order:

• HorizontalFlip(p=1) on original images.

• Rotate(limit=15,p=0.8) on the original images plus the ones obtained by the hor-
izontal flipping.

• RandomCrop(H*0.8,W*0.8,p=0.8) on the original images plus the ones obtained by
the horizontal flipping plus the ones obtained by the rotation.

where H and W are the height and width of the processed image, respectively, and p and
limit are the probability that the transformation happens, and the rotation limits in de-
grees (the angle is between -limit and +limit), respectively.

Once the datasets have been defined, the settings of the methods can be adjusted. The
thresholding [17] and statistical [53] approaches have been left to their default implemen-
tations settings described in subsection 3.1.1 and subsection 3.2.1, respectively. The U-
Net approach [25] uses only the complete model named “Skinny” with the following
settings:

• Maximum number of epochs = 200

• Batch size = 3

• Initial learning rate = 10−4
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• Minimum learning rate = 10−6

• Reduce learning rate on plateau patience = 5

• Early stopping patience = 10 for HGR, ECU, and Schmugge models.
Early stopping patience = 50 for light, medium, dark models (by having only 4
validation images in the dark sub-dataset, the model has a harder time taking the
right path).

• Adam [63] optimizer with β1 = 0.9 and β2 = 0.999

• The loss function is the average of Binary Cross-Entropy and the Dice coefficient.

• Theoriginal preprocessing: the imageswithover (512×512)pixels are downscaled
preserving the aspect ratio so that the number of pixels does not exceed (512 ×
512). Moreover, Skinny applies a padding operation after the possible downscale
to make the width and height of images multiple of 32, as seen in Figure 4.3.

• The models have been trained by monitoring the F1 over the validation set and
saving on newmax values.

The last phase of the setup is defining the evaluation process. Some methods did not
provide a binary prediction, but a prediction with grayscale values. All the predictions
have been binarized by rounding each pixel value to either be white or black. Initially,
the metrics are measured for all the instances, then the average and population standard
deviation for each metric are computed.

Two different settings of dataset evaluation are performed: single and cross evaluation.
The first measures how well a method performs with respect to the same dataset, the
second measures how well a method generalizes with respect to other datasets.
In the single evaluation of a method over a dataset, the method is eventually trained on
the training set, in the case of a trainable method, and then predictions are performed on
the test set.
In the cross evaluation, only the trainable approaches are analyzed. The models are the
same of the single evaluation: each model is trained on the training set of a dataset. The
evaluation of a method is performed over the whole dataset by the models that have not
been trained on the concerning dataset.
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(a) (b) (c) (d)

Figure 4.3: Skinny [25] applies padding to make the width and height of an image a multiple of
32. If the dimensions of the image are already a multiple of 32, a padding of 32 is
still applied. (a) original image; (b) ground truth; (c) preprocessed original image; (d)
preprocessed ground truth

4.3 Performance on single databases

In the single evaluation of the datasets, Table 4.3, the deep-learning approach beats its
competitors in all the measurements, while the statistical approach comes always second.
The Schmugge dataset describes a higher difficulty of classification that can be attributed
to the variety of the lighting conditions, subjects, and environments present in its pic-
tures. The variety of the database can also be described by the high standard deviation
measurements obtained. Furthermore, by considering the ambiguous regions as skin pix-
els, the performance of the classifiermay be affected. The highDprs scores obtained by the
statistical and thresholding methods may indicate the presence of many True Negatives,
as the metric is the only one between the chosen metrics that incorporates them. HGR
seems to be the easier dataset to classify, which can be due to the relatively low diversity of
subjects and backgrounds. In fact, learning approaches tend to have very high measure-
ments. Tarasiewicz et al. 2020 [25] seems to perform very well on this dataset, achieving
very low standard deviation scores. In the ECU dataset, the results of the histogram and
thresholding approaches are relatively close, while the CNN outperforms them by far.

Some interesting instances can be seen in Figure 4.4. The first row shows the prob-
lem that having a backgroundwith similar colors to the skin represents in the color-based
methods. The statistical method seems to act relatively better in this scenario compared
to Brancati et al. 2017 [17], as seen in the second row. In the third row, the statistical ap-
proach classify some background and hair pixels as skin, while the rule-basedmethod has
many False Negatives, but the head remain still recognizable. The fourth row represent
a very hard image to classify. Interestingly, the U-Net describes a very bad classifications,
with a tremendous number of False Positives. The thresholding approach is the most re-
strictive on False Positives in this instance. The next-to-last image has an inconvenient
background with skin-like colors and only Tarasiewicz et al. 2020 [25] tend to have a
good classification. The statistical method manages to classify the skin pixels well, but
has a really high number of False Positives. The last image is a landscape image without

43



4 Results

skin pixels and once again the color-based approaches describe many False Positives, with
the machine learning one having lots of them.

Method\Database ECU HGR Schmugge

F1 ↑
Tarasiewicz et al. [25] 0.9133± 0.080.9133± 0.080.9133± 0.08 0.9848± 0.020.9848± 0.020.9848± 0.02 0.6121± 0.450.6121± 0.450.6121± 0.45
Acharjee [53] 0.6980± 0.22 0.9000± 0.15 0.5098± 0.39
Brancati et al. [17] 0.6356± 0.24 0.7362± 0.27 0.4280± 0.34

IoU ↑
Tarasiewicz et al. [25] 0.8489± 0.120.8489± 0.120.8489± 0.12 0.9705± 0.030.9705± 0.030.9705± 0.03 0.5850± 0.440.5850± 0.440.5850± 0.44
Acharjee [53] 0.5751± 0.23 0.8434± 0.19 0.4303± 0.34
Brancati et al. [17] 0.5088± 0.25 0.6467± 0.30 0.3323± 0.28

Dprs ↓
Tarasiewicz et al. [25] 0.1333± 0.120.1333± 0.120.1333± 0.12 0.0251± 0.030.0251± 0.030.0251± 0.03 0.5520± 0.640.5520± 0.640.5520± 0.64
Acharjee [53] 0.4226± 0.27 0.1524± 0.19 0.7120± 0.54
Brancati et al. [17] 0.5340± 0.32 0.3936± 0.36 0.8148± 0.48

Table 4.3: Single evaluation on datasets.
For each dataset: methods are eventually trained on the training set, in the case of train-
able methods, and then predictions are performed on the test set.
For example, with ECU as the dataset, it means that amethod is trained using the train-
ing set of ECU, if the method is trainable, and then tested on the test set of ECU.
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(a) (b) (c) (d) (e)

Figure 4.4: Skin detection results in datasets single evaluation: (a) the input image; (b) the ground
truth; (c) Tarasiewicz et al. 2020 [25]; (d) Acharjee [53]; (e) Brancati et al. 2017 [17].
In all the following results, Tarasiewicz et al. 2020 [25] predictions have different di-
mensions than other images due to the network preprocessing.
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4.4 Performance across databases

In the cross evaluation of the datasets (present at Table 4.4), the deep learning approach
still dominates, but there are some interesting exceptions. In fact, usingHGRas the train-
ing set and predicting over Schmugge, Acharjee 2018 [53] outperforms Tarasiewicz et al.
2020 [25], especially in the F1 score. This means that, while the statistical method gener-
ally performs better than Tarasiewicz et al. 2020 [25], it also includes a lot of False Pos-
itives, as the F1-IoU and the Dprs metrics indicate. The latter is particularly bad in both
cases, evidencing a big distance between the ideal ground truths and the predictions. In
the case where ECU is used to train and Schmugge to predict, and in the opposite case,
Tarasiewicz et al. 2020 [25] beats the statistical method discretely. In the latter case, the
U-Net describes a slightly worse F1-IoU, suggesting the presence of False Positives and
False Negatives. Tarasiewicz et al. 2020 [25] outperforms the other machine learning ap-
proach by far in the remaining cases. The U-Net exceeds an F1 score of 80 in the case of
Schmugge as the training set andHGRas the prediction set despite the size of the training
set, which is not huge.

Training ECU HGR SCHMUGGE
Testing HGR SCHMUGGE ECU SCHMUGGE ECU HGR

F1 ↑
Taras. et al. [25] 0.9308± 0.110.9308± 0.110.9308± 0.11 0.4625± 0.410.4625± 0.410.4625± 0.41 0.7252± 0.200.7252± 0.200.7252± 0.20 0.2918± 0.31 0.6133± 0.210.6133± 0.210.6133± 0.21 0.8106± 0.190.8106± 0.190.8106± 0.19
Acharjee [53] 0.5577± 0.29 0.3319± 0.28 0.4279± 0.19 0.4000± 0.320.4000± 0.320.4000± 0.32 0.4638± 0.23 0.5060± 0.25

IoU ↑ Taras. et al. [25] 0.8851± 0.150.8851± 0.150.8851± 0.15 0.3986± 0.370.3986± 0.370.3986± 0.37 0.6038± 0.220.6038± 0.220.6038± 0.22 0.2168± 0.25 0.4754± 0.220.4754± 0.220.4754± 0.22 0.7191± 0.230.7191± 0.230.7191± 0.23
Acharjee [53] 0.4393± 0.27 0.2346± 0.21 0.2929± 0.17 0.2981± 0.240.2981± 0.240.2981± 0.24 0.3318± 0.20 0.3752± 0.22

Dprs ↓
Taras. et al. [25] 0.1098± 0.150.1098± 0.150.1098± 0.15 0.7570± 0.560.7570± 0.560.7570± 0.56 0.3913± 0.260.3913± 0.260.3913± 0.26 0.9695± 0.440.9695± 0.440.9695± 0.44 0.5537± 0.270.5537± 0.270.5537± 0.27 0.2846± 0.270.2846± 0.270.2846± 0.27
Acharjee [53] 0.5701± 0.29 1.0477± 0.35 0.8830± 0.23 1.0219± 0.42 0.7542± 0.30 0.6523± 0.27

F1 − IoU ↓ Taras. et al. [25] 0.04570.04570.0457 0.06390.06390.0639 0.12140.12140.1214 0.07500.07500.0750 0.1379 0.09150.09150.0915
Acharjee [53] 0.1184 0.0973 0.1350 0.1019 0.13200.13200.1320 0.1308

Table 4.4: Cross evaluation on datasets.
For each dataset: methods are trained on the training set and then predictions are per-
formed on all the images of every other datasets.
For example, with ECUas the training dataset andHGRas the testing dataset, itmeans
that a method is trained using the training set of ECU, and then tested on all theHGR
dataset.

Some interesting instances are shown in Figure 4.5. The expression “HGR on ECU”
describes the situation in which the evaluation is performed by using HGR as the train-
ing set and ECU as the test set. In cross evaluations, this type of expression is going to be
used a lot to avoid text redundancy. The first row (HGR on ECU) shows a really poor
classification by the statistical approach. In the second row (ECUon Schmugge) it can be
noticed howAcharjee 2018 [53] tends to exaggerate at classifying skin pixels in some cases,
confirming the above intuitions on the statistical method having a lot of False Positives.
The third row (ECU on Schmugge) describes a tragic classification by Tarasiewicz et al.
2020 [25], thatmight be caused by the presence of tricky lighting conditions and shadows
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on the skin regions. The statistical approach performs badly too, but still has a lot better
classification. In this case, the ground truth shows how incorporating the ambiguous re-
gions provided by the Schmugge database makes the skin regions quite pixels-hungry on
the border with non-skin regions. The fourth image (Schmugge on ECU) represents a
bad classification in both approaches, where there is especially an outstanding number of
False Positives. The next-to-last image (HGR on Schmugge) is part of the datasets com-
bination in which Acharjee 2018 [53] outperforms the deep learning one. The statistical
method reports a lot of False Positives, but also a lot of True Positives, which Tarasiewicz
et al. 2020 [25] struggles to identify. The last picture (HGR on Schmugge) is also part of
the same datasets combination and describes a similar situation: the U-Net fails at label-
ing several skin pixels, especially on very lit regions, while the statistical method overdoes
it. This image represents the high complexity and diversity of the Schmugge content.
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(a) (b) (c) (d)

Figure 4.5: Skin detection results in datasets cross evaluation: (a) the input image; (b) the ground
truth; (c) Tarasiewicz et al. 2020 [25]; (d) Acharjee [53]
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4.5 Performance on single Skin tones

In the single evaluation of the skin tones sub-datasets (present at Table 4.5), the U-Net
outperforms the competitors in all cases, and the thresholding approach comes last in all
cases. The learning approaches describe a very low standard deviation on the darker skin
tones, indicating that the diversity of the images might not be very high. Tarasiewicz et
al. 2020 [25] reports outstanding scores, having almost ground truth-like predictions, as
described by the Dprs measure. Brancati et al. 2017 [17] instead describes horrible results,
which may indicate that the skin clustering rules are leaving out the darker skin pixels.
The machine learning methods have the highest difficulty at classifying the medium skin
tones, which pictures include a lot of difficult scenarios, such as clay terrains that are skin-
like colored. Despite the troubles, all the approaches report generally good scores on both
medium and light skin tones, especially the machine learning methods.

Method\Database DARK MEDIUM LIGHT

F1 ↑
Tarasiewicz et al. [25] 0.9529± 0.000.9529± 0.000.9529± 0.00 0.9260± 0.150.9260± 0.150.9260± 0.15 0.9387± 0.120.9387± 0.120.9387± 0.12
Acharjee [53] 0.8123± 0.02 0.7634± 0.19 0.8001± 0.15
Brancati et al. [17] 0.2620± 0.14 0.6316± 0.20 0.6705± 0.14

IoU ↑
Tarasiewicz et al. [25] 0.9100± 0.010.9100± 0.010.9100± 0.01 0.8883± 0.180.8883± 0.180.8883± 0.18 0.9006± 0.140.9006± 0.140.9006± 0.14
Acharjee [53] 0.6844± 0.03 0.6432± 0.17 0.6870± 0.16
Brancati et al. [17] 0.1587± 0.10 0.4889± 0.19 0.5190± 0.14

Dprs ↓
Tarasiewicz et al. [25] 0.0720± 0.010.0720± 0.010.0720± 0.01 0.1078± 0.210.1078± 0.210.1078± 0.21 0.0926± 0.150.0926± 0.150.0926± 0.15
Acharjee [53] 0.3406± 0.05 0.3452± 0.23 0.3054± 0.20
Brancati et al. [17] 0.8548± 0.12 0.5155± 0.24 0.4787± 0.17

Table 4.5: Single evaluation on skin tones.
For each dataset: methods are eventually trained on the training set, in the case of train-
able methods, and then predictions are performed on the test set.
For example, with DARK as the dataset, it means that a method is trained using the
training set of DARK, if the method is trainable, and then tested on the test set of
DARK.

Some interesting instances can be seen in Figure 4.6. The first two rows depict darker
skin tones. In both examples, it is possible to notice a pattern in the classification of each
approach: Tarasiewicz et al. 2020 [25] produces almost ground truth-like predictions;
the statistical method tends to exaggerate on classifying skin pixels, but has an excellent
number of True Positives; Brancati et al. 2017 [17] seems to fail at classifying the darkest
skin tones. The next two rows represent medium skin tones. The following row reports
similar results to the dark skin tones rows, but in this case the thresholding approach
has good results. It is noticeable that, while the statistical method tends to include many
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False Positives, the thresholding one is a lot more conservative, marking only the inner
regions of the face, which are sufficient for describing the face shape. The last row of
medium skin tones represents a tricky background with a clay terrain. Tarasiewicz et al.
2020 [25] produces a very good prediction, while the other approaches include many
False Positives. Acharjee 2018 [53] reports a tremendous number of False Positives, while
Brancati et al. 2017 [17] is deceived by the clay terrain and ruins its otherwise excellent
classification. The last two rows feature people with light skin tones. In the starting row,
the U-Net and the rule-based approaches have very good predictions, with Tarasiewicz et
al. 2020 [25] incorporating more False Positives, and Brancati et al. 2017 [17] including
more FalseNegatives. The statistical approach reports once again a huge number of False
Positives. The last row depicts good results on all methods and shows some limitations
that Brancati et al. 2017 [17] seems to have on tricky lighting conditions.
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(a) (b) (c) (d) (e)

Figure 4.6: Skin detection results in skin tones single evaluation: (a) the input image; (b) the
ground truth; (c) Tarasiewicz et al. 2020 [25]; (d) Acharjee [53]; (e) Brancati et al.
2017 [17].
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4.6 Performance across Skin tones

The cross evaluation of the skin tones sub-datasets, Table 4.6), describes some interesting
situations. As usual, the U-Net outperforms the other machine learning approach in
most situations, but it is outperformed a pair of times. In fact, using the darker skin
tones as training and predicting on the medium skin tones makes Acharjee 2018 [53] the
seemingly better classifier. It describes best scores in allmetrics but the difference between
F1 and Dprs, with also a lower population standard deviation. The dark sub-dataset was
the smallest one and therefore has been data-augmented. However, the augmentation has
been performed with light transformations that do not detach from the original images
toomuch. Hence, these scoresmay indicate that Acharjee 2018 [53] performs better with
a smaller training set. Anyway, Tarasiewicz et al. 2020 [25] describes only slightly worse
results and reports good classifications in this scenario too. The higher difference between
F1 and Dprs may indicate the usual greedy that the statistical method demonstrates on
False Positives. The dark on light case is particularly interesting because the statistical
approach wins on the F1-Score, but is outperformed in all the others. Winning on the F1-
Score and losing on the IoUmeans that the statistical approach picksmore True Positives
than the deep learning one. Tarasiewicz et al. 2020 [25] also describes more unstable
results as the population standard deviation is higher. The F1 and IoU scores are relatively
close between the approaches, but the Dprs is far better with Tarasiewicz et al. 2020 [25].

This behavior may suggest, along with the F1 and IoU considerations, and the fact that
their difference is higher on the statistical method, the presence of many False Positives
and/or False Negatives, which however seems unlikely given the previous observations,
on the statistical method predictions. All the other situations have the U-Net winning
on the scores by a great degree. In the medium on dark situation, Acharjee 2018 [53]

describes a very high Dprs, even higher than the light on dark case, where the F1 and IoU
scores are worse. This is a clear indicator that the Specificity is driving the prediction
away from the ideal ground truth, so it may be an indicator of a very small number of
True Negatives. Tarasiewicz et al. 2020 [25] presents the highest score in the light on
medium case, which may be a signal of the need of having bigger training data, but on
the other hand, it performs far worse on the light on dark case, indicating that a bigger
training data might not be sufficient. In fact, the U-Net describes the best average score
by training on the medium skin tones, which represent a smaller dataset than the lighter
skin tones, but a midpoint between the colors of darker and lighter skin tones. This may
be a representation of how the Neural Network adapts and learns to classify new skin
tones.

Some interesting instances are reported in Figure 4.7. The first two rows represent
dark on medium cases. The results seem to confirm the earlier guesses on the statistical
method incorporating a lot of False Positives. Tarasiewicz et al. 2020 [25] depicts a ter-
rible classification, with a lot of False Positives and False Negatives. In the second row,
the tricky lighting causes troubles to the U-Net, which provides another terrible predic-
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tion, while the statistical method has a far better prediction, despite including a lot of
False Positives too. The third row and the fourth row represent dark on light situations.
Tarasiewicz et al. 2020 [25] produces an awful prediction even in these cases, featuring
particularly a lot of False Negatives. Acharjee 2018 [53] does the opposite and once again
exaggerates as usual with the classification of skin pixels. The original images of these two
rows are also featured in Figure 4.5, where they reported similar issues, so it seems that
both approaches struggle to adapt to skin pixels different from the ones of the training
set in these types of images. The smallest image depicts a quite extreme and unnatural
level of lighting, hence the issues are easily justifiable. The other image seems to depict
a more natural skin tone, but it must be taken into account that it may still be far from
the skin tones of the training set, which may be too light or dark. The fifth row features
a medium on dark case, where the hypothesis of having very few True Negatives, driving
the Dprs measure high, seems confirmed. Tarasiewicz et al. 2020 [25] on the other hand
performs a quite good classification, marking almost correctly most of the skin regions.
The last row represents a light on dark case on the same original picture of the previous
row, with the purpose of a quick comparison. In this case, the statistical approach does
a much better job, especially at predicting non-skin pixels, which may indicate that the
light sub-dataset containsmore images featuring sky andwater labeled as non-skin pixels.
Tarasiewicz et al. 2020 [25] performs quite similarly to the previous instance.

Training DARK MEDIUM LIGHT
Testing MEDIUM LIGHT DARK LIGHT DARK MEDIUM

F1 ↑
Taras. et al. [25] 0.7300± 0.25 0.7262± 0.26 0.8447± 0.130.8447± 0.130.8447± 0.13 0.8904± 0.140.8904± 0.140.8904± 0.14 0.7660± 0.170.7660± 0.170.7660± 0.17 0.9229± 0.110.9229± 0.110.9229± 0.11
Acharjee [53] 0.7928± 0.110.7928± 0.110.7928± 0.11 0.7577± 0.120.7577± 0.120.7577± 0.12 0.5628± 0.14 0.7032± 0.14 0.5293± 0.20 0.7853± 0.11

IoU ↑ Taras. et al. [25] 0.6279± 0.27 0.6276± 0.280.6276± 0.280.6276± 0.28 0.7486± 0.150.7486± 0.150.7486± 0.15 0.8214± 0.160.8214± 0.160.8214± 0.16 0.6496± 0.210.6496± 0.210.6496± 0.21 0.8705± 0.130.8705± 0.130.8705± 0.13
Acharjee [53] 0.6668± 0.110.6668± 0.110.6668± 0.11 0.6229± 0.13 0.4042± 0.13 0.5571± 0.14 0.3852± 0.19 0.6574± 0.12

Dprs ↓
Taras. et al. [25] 0.3805± 0.33 0.3934± 0.340.3934± 0.340.3934± 0.34 0.2326± 0.170.2326± 0.170.2326± 0.17 0.1692± 0.180.1692± 0.180.1692± 0.18 0.3402± 0.210.3402± 0.210.3402± 0.21 0.1192± 0.160.1192± 0.160.1192± 0.16
Acharjee [53] 0.3481± 0.160.3481± 0.160.3481± 0.16 0.4679± 0.18 0.6802± 0.20 0.5376± 0.23 0.6361± 0.22 0.3199± 0.16

F1 − IoU ↓ Taras. et al. [25] 0.10210.10210.1021 0.09860.09860.0986 0.09610.09610.0961 0.06900.06900.0690 0.11640.11640.1164 0.05240.05240.0524
Acharjee [53] 0.1260 0.1348 0.1586 0.1461 0.1441 0.1279

Table 4.6: Cross evaluation on skin tones.
For each dataset: methods are trained on the training set and then predictions are per-
formed on all the images of every other datasets.
For example, with DARK as the training dataset and LIGHT as the testing dataset, it
means that a method is trained using the training set of DARK, and then tested on all
the LIGHT dataset.
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4 Results

(a) (b) (c) (d)

Figure 4.7: Skin detection results in skin tones cross evaluation: (a) the input image; (b) the
ground truth; (c) Tarasiewicz et al. 2020 [25]; (d) Acharjee [53].
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4.7 Inference time

The inference time evaluation follows these rules:

• Image loading into memory is excluded.

• Image saving to disk is excluded.

• The measurement starts when the algorithm starts.

• Pre-processing and post-processing, if present, are included in the measured exe-
cution time.

It has been defined a set of 14 images of the same dimensions to use as the performance
evaluation set: it is composed of the first 14 images of the ECU dataset of size 352× 288.
One image at a time has been processed by the methods and the resulting execution time
has been saved. The set of pictures has been processed 5 times and, each time, the average
measurement time has been calculated. Finally, the five average values have been averaged
into a single value and the standard deviation has been computed.
The inference timemeasurements have all been performed on an i7 4770k processor run-
ning on Pop!_OS 20.10 x86_64 with 16 GB of RAM. The rule-based [17]method uses
OpenCV 2.4.9 and is compiled with g++ version 10.2.0-13ubuntu1. The other methods
use Python 3.8.6 64bit. Tarasiewicz et al. 2020 [25] uses Tensorflow 2.5.0 for inference
time measurements, but the models has been trained using Google Colab with Tensor-
flow 2.4.1 and Python 3.7.10.

The inference time evaluation (found inTable 4.7) reports a very simple situation. The
thresholding approach is much faster than the other approaches and also expresses a null
standard deviation, which highlights the impartiality that the algorithm describes with
respect to images of different content. The statistical approach comes second and reports
a really low standarddeviation score too. Despite coming second, its score is far away from
the first place. At the last place lies Tarasiewicz et al. 2020 [25],with a score of almost one
second per image and the biggest standard deviation score, which may indicate that its
inference times depend slightly on thepixels of an image. The scores indicate that the only
suitable approach to real-time skin detection on a CPUmay be Brancati et al. 2017 [17],
which is very fast and could describe the same behavior on less powerful hardware.

Inference time (seconds)

Tarasiewicz et al. [25] 0.826581± 0.043
Acharjee [53] 0.457534± 0.002
Brancati et al. [17] 0.007717± 0.0000.007717± 0.0000.007717± 0.000

Table 4.7: Inference time performance measurements.
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5 Conclusion

In this thesis the significance and limitations of skin detection have been addressed. A
review of public datasets available in the domain and an analysis of state-of-the-art ap-
proaches has been presented, including a new proposed taxonomy. Three different state-
of-the-artmethods have been thoroughly examined implemented and validated in respect
to the original papers, when possible. An evaluation of the chosen approaches in differ-
ent settings has been presented, alongside a discussion on themetrics used in the domain.
Finally, the results have been thoroughly discussed through data and figures.

5.1 Discussion

The analysis of the evaluation results has pointed out the strengths and weaknesses of
each of the chosen approaches.
The thresholdingmethod reported the worst classification scores but described inference
times dozens of times faster on the CPU.Moreover, its prediction time resulted indepen-
dent of image pixels. The prediction is inaccurate when the images have dark skin tones
and backgrounds with skin-like colors.
The statistical approach reported better results, but was prone to several False Positives.
Being color-based, it also shared some limitations with the thresholding approach: mate-
rials with skin-like colors have represented a challenge to classify.
The U-Net approach has always reported the best scores. It demonstrated how deep
learning is able to find features other than color to be able to classify skin pixels even
in tricky situations. It struggled to generalize in two cases: when the training dataset was
very small and when the training data was too different from the test data.
The involvement of more balancedmetrics has proven to be essential to clarify situations
where other metrics described over-optimistic results.

5.2 FutureWork

Skin detection approaches have evolved in multiple paths, covering aspects such as classi-
fication performance and computational efficiency. However, skin detection datasets still
represent a major limitation in the development and evaluation of skin detectors. New
datasets are still highly sought after and could represent a significant boost in the skin
detection domain.
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5 Conclusion

In future evaluations, it should be taken into account the metric behavior and its lim-
itations. Metrics that describe a more stable behavior on unbalanced datasets can be in-
volved to represent results in a more complete way.

Finally, the development of skin detectors could benefit from the progress that image
segmentation is having with deep learning, especially in the medical field, which often
features binary classification problems.
For achieving better classifications, Transformers could be considered, as they have
proven to be really solid in Natural Language Processing [64], and are starting to gain
traction in the image segmentation tasks, so much that some U-Net-like architectures
have been recently designed [65, 66].

Regarding performance and computational powers, skin detectors could venture into
mobile deep learning development. In fact, mobile phones, are starting to become a solid
platform for U-Nets [67].
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